
ABSTRACT: A mathematical framework is introduced that re-
lates analytical data to the composition of fat and oil mixtures.
Within this framework, the noise characteristics of four common
analytical techniques [FAME, FAME2-pos, CN (carbon number),
and AgLC] were investigated and modeled by both additive and
multiplicative noise terms. The fat blend recognition (FBR) perfor-
mance was investigated under these two types of noise, both
qualitatively and quantitatively. Furthermore, an extension is pro-
posed that makes it possible to detect interesterifications of un-
known mixtures, which was impossible before. The proposed
procedure is divided into a qualitative estimation stage, which is
focused on identifying the raw materials (RM), followed by a
quantitative estimation stage, which is focused on quantifying the
levels of the RM identified. We compared two qualitative strate-
gies and four quantitative methods for their ability to correctly es-
timate simulated mixtures under the noise characteristics deter-
mined. The comparison of methods was extended to actual mix-
tures, revealing promising results. Our analysis presents multiple
directions for further adulteration and FBR studies. 
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The economic advantage of admixing lower-grade products has
always been a temptation for commodity suppliers, and vari-
ous examples of these fraudulent practices can be given (1).
Methods for detecting these kinds of malpractices have been
the subject of a significant amount of research (2–12). In the
case of fat or oil mixtures, it is impossible to physically sepa-
rate the mixture into its original constituents, which severely
complicates detection capabilities. This leaves the problem of
detection based on measurable properties of the mixture. Most
promising is the TAG (triacylglyceride) distribution of the mix-
ture. The TAG are the main constituents of fats and oils, and
the TAG distribution of the mixture is a linear combination of
the TAG distributions of the raw materials (RM) (5,13). How-
ever, in general the TAG distribution cannot be measured di-

rectly: It can only be estimated using a nonlinear one-to-many
backward mapping (14). The fact that the relation between the
TAG distribution and analytical data is linear explains the fre-
quent use of FAME and carbon number (CN) analysis data
(15–17). Moreover, minor components, such as the sterol con-
tent, can be used to investigate the composition of fats or oils
(9). However, the sterol content can be altered without chang-
ing the composition of the mixture itself, thus significantly im-
pairing the ability to detect adulteration. 

Research focusing on the detection of adulteration has
mainly investigated mixtures of milkfat (MF) and non-milkfat
(non-MF) as well as cocoa butter (CB) and cocoa butter equiv-
alents (CBE). Precht (2) investigated linear models based on
CN data capable of detecting non-MF additions to MF sam-
ples. Ulberth (3) studied the same problem and investigated the
applicability of a classification approach based on CN data. Ul-
berth (4) also considered the problem with only a single non-
MF addition and proposed a method based on partial least
squares optimization of the CN data. Simoneau (5) proposed
identifying the presence of CBE in CB samples by means of
scatterplots of a few TAG. Dionisi et al. (6) studied both linear
and quadratic models based on TAG and TAG ratios to deter-
mine the CBE content in CB samples. 

A more general approach to detecting adulteration is to
focus not only on determining addition levels but also on quan-
tifying all RM used. This is often referred to as fat blend recog-
nition (FBR) and could serve applications in the domain of
patent infringement detection. 

Van Niekerk and Burger (7) investigated mixtures of, at
most, seven RM and proposed a least-squares approach based
on FAME data. Van Niekerk and Hasty (8) proposed a few op-
timizations of this method. Abuhadeed and Kotb (9) used the
unconstrained pseudoinverse to quantify mixtures based on
FAME data. De Jong and De Jong (10) investigated a brute
force method to handle a situation in which many RM are to be
considered, also using FAME data. De Jong and De Jong also
considered a mixed integer programming branch-and-bound
method. 

A special problem is posed by mixtures containing chemi-
cally processed RM. One frequently applied chemical process-
ing technique is interesterification (13). None of the investiga-
tions mentioned above provide any means for detecting inter-
esterifications. 
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In this paper we present an investigation of the noise char-
acteristics of four analytical techniques and propose a noise
model. Both qualitative and a quantitative approaches to FBR
are presented. Furthermore, a novel strategy is proposed for de-
tecting interesterifications of unknown mixtures. The ap-
proaches are compared based on simulated data and real data.

THEORETICAL BACKGROUND

Mathematical problem formulation. Each fat can be uniquely
described by its TAG distribution, which can be represented as
a vector x, and its analytical data can be grouped in a vector y
(14). The space containing all possible TAG distributions can
be referred to as X, and the space containing all possible com-
binations of analytical data as Y. A mixture of fats and oils can
then be represented as a vector w, which corresponds to a point
in both X and Y:

x = Mxw [1]

y = Myw [2]

where MX represents a matrix in which each column represents
the TAG distribution of one of the RM and MY represents a ma-
trix in which each column represents the analytical data of one
of the RM. The w is the same in both equations. 

Figure 1 shows the spaces and their interrelations. FBR aims
to uncover the vector w by obtaining an estimated vector we
that resembles the real vector wr as closely as possible: 

εw = d(wr, we) [3]

where d indicates a distance measure between its two argu-
ments. The main difficulty in minimizing Equation 3 is the fact
that wr is unknown. However, using Equation 1, we can also
define a distance measure in terms of the TAG distributions: 

εx = d(xr, Mxwe) [4]

Since the TAG distribution of a mixture can be estimated only
by a nonlinear one-to-many mapping (14), we make use of the
analytical data and focus on defining a distance measure in the
analytical space: 

εy = d(yr, Mywe) [5]

One of the main considerations for choosing a distance mea-
sure is the type of noise present. This will be investigated in
detail in the following paragraphs. 

Physical properties of mixtures impose certain constraints
on we, namely: 

we,i ≥ 0 ∀ i ∈ {1...nRM} [6]

[7]

where nRM indicates the number of RM that is being consid-
ered and we,i are the individual weight values. 

In addition to these constraints, there are extra constraints
from expert FBR knowledge: 

[8]

[9]

where I is the indicator function, li defines a lower limit for the
fractions, and k is a scalar. The constraint in Equation 8 im-
poses a lower limit li on each of the weight fractions. For in-
stance, knowledge about the quantity of certain fractions may
be available. The constraint in Equation 9 states that the num-
ber of RM used in a mixture is usually limited. It is highly un-
likely, for example, to find more than six RM in a commercial
fat mixture. 

The FBR strategy we propose consists of two parts: a quan-
titative estimation and a qualitative estimation. They are dis-
cussed separately in the following sections. 

Noise characteristics of the analytical data. The analytical
techniques will introduce different noise characteristics. We as-
sume the following noise model for analytical noise: 

yn = yr + c1yrηη1 + c2ηη2 [10]

where yn is the noisy version of yr, ηηi represent independent
vectors of Gaussian distributed variables with mean 0 and stan-
dard deviation 1, and c1 and c2 are noise parameters that indi-
cate the noise strength. More precisely, c1 determines the
amount of multiplicative noise and c2 the additive noise. To im-
pose nonnegativity and summation to one, the resulting yn
needs to be clipped and normalized. For each analytical tech-
nique, the appropriate noise parameters can be estimated from
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FIG. 1. Schematic representation of the TAG space X, measurement
space Y, and composition space W, including their interrelations. Each
w ∈ W corresponds to a vector in both X and Y. The forward mapping
indicated is a many-to-one linear matrix multiplication, whereas the
backward mapping is best described by a nonlinear one-to-many map-
ping (14).



a collection of test samples, as will be shown in the Experi-
ments section. 

In real applications, there will also be noise in the form of
natural variance. The characteristics of and typical ranges for
this variance are unknown, and are therefore excluded from the
model. 

Quantitative FBR. The RM in a mixture can be quantified
by choosing a distance measure in Equation 5 and minimizing
εy with respect to we. For correct quantitative estimation, it is
imperative to include all the appropriate RM in My, as it is im-
possible to detect an RM that has not been included. Based on
the known yn and My parameters, we can be found. The follow-
ing sections present an investigation of two possible distance
measures. 

(i) Differential distance measure. Minimization of εy based
on a differential distance measure can be formulated as a mini-
mization of the weighted mean squared error (MSE): 

[11]

subject to

where diag(a) is a matrix with the weight elements of a on the
diagonal and ||x|| represents the 2-norm of vector x. We chose
to use the regular MSE with a = 1 since optimization with re-
spect to a is highly problem specific. Considerations for prefer-
entially matching individual experimental measurements could
be the knowledge that certain measurements have a higher
spread due to natural variation. 

A mathematically consistent method for solving the given
constrained minimization problem of Equation 11 is using
Lagrange multipliers (18,19). A solution using Lagrange mul-
tipliers with only inequality constraints is provided by the
nonnegative least squares (NNLS) algorithm (20). However,
this algorithm cannot be straightforwardly extended to in-
clude the equality constraint as well. By normalizing the so-
lution, we can create a suboptimal solution. The solution
based on the normalized NNLS algorithm will be referred to
as “L1”. We have also derived a Lagrange multiplier solution
that can handle both types of constraints by iteratively apply-
ing the Lagrange multiplier solutions to the two separate con-
straint classes until convergence is reached. This method, de-
noted as “L2,” ensures a solution that is optimal in terms of
the optimization criterion. The algorithm in pseudocode is
listed in Figure 2. 

(ii) Relative distance measure. Csiszár (21) has postulated a
set of axioms (consistency, distinctness, continuity, locality,
and composition consistency) that a relative distance measure
should satisfy. Although it is beyond the scope of this paper to
discuss these axioms in detail, the conclusion that can be drawn
from them is that for real valued functions having both positive
and negative values, only the MSE is consistent with these ax-

ioms. For functions that must be nonnegative, the information-
divergence (I-divergence) is the only selection rule that satis-
fies all five axioms. The I-divergence is defined as: 

[12]
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FIG. 2. Pseudocode for the Lagrange methods “L2” and “L3.” The top
lists the main code (with k being the iteration), which iteratively calls
the two subroutines: Lagrange Equality and Lagrange Inequality. For the
L2 method, X is the unity matrix, and for the L3 method it is defined by
Equation 21 (see Theoretical Background section).



where the division of vectors is done element-wise. It can be
shown that the I-divergence is minimized by maximizing the
log-likelihood function of a Poisson distributed variable (Pois-
son noise is multiplicative noise) (22). Such a log-likelihood
function can be maximized with the iterative expectation max-
imization algorithm (EM) (23). In the remainder of this paper,
this method will be referred to as EM. 

Qualitative FBR. The expert knowledge that a mixture will
have a limited number of RM is mathematically described by
Equation 9. It is difficult to extract this qualitative information
from the available data for a mixture of unknown origin and
will vary from case to case, making mathematical treatment
problematic. Moreover, the quantitative approach has the math-
ematical property that adding an extra RM will always result in
the same or a decreased εy. This is because the result of Equa-
tion 11 decreases when the number of RM considered is en-
larged. The opposite, leaving out an RM, will result in the same
or a higher εy. 

To find the correct set of RM present in the mixture, Van
Niekerk and Burger (7) proposed using backward elimina-
tion, leaving out the smallest fraction in we, to obtain a solu-
tion with no fractions smaller than a preset threshold. This
method is referred to as “Niekerk” in the remainder of the
paper. Alternatively, one can observe the change in εy. We
propose a qualitative estimation that stops when εy increases
more than a certain threshold. This method will be referred
to as “Vliet.” 

Detection of interesterifications of unknown mixtures. In
reality, FBR is problematic because the initial RM can un-
dergo chemical processing, which changes the constituents.
One frequently applied chemical processing technique is in-
teresterification (13), denoted as (for two fats, Fa and Fb): 

in[αFa/(1 − α)Fb] [13]

where α is a parameter that defines the ratio of the two fats (0
≤ α ≤ 1). Because TAG have only three FA attached to them, it
is possible to create all interesterifications in the entire range of
α with four points along the trajectory described by α. The set
of four points is denoted as preset in(RM). 

This can be proven as follows: The FA distributions F(Fa)
and F(Fb) are constants that are scaled by α and 1 − α, respec-
tively, and summed to give the FA distribution of the interester-
ification: 

F{in[αFa/(1 – α)Fb]} = αF(Fa) + (1 − α)F(Fb) [14]

The TAG distribution of the interesterification can be ob-
tained by multiplying the respective FA distribution values
of the combined FA distribution for each TAG. After inter-
esterification, FA on the TAG originate from either Fa, de-
noted as FAa, or Fb, denoted as FAb. Given that an FA can
originate from two fats, a total of eight combinations can be
formed: 

[15]

To obtain the amount for a TAG after interesterification, one
should substitute the respective FA values and sum them. Since
this results in a (polynomial) function of α with only four fac-
tors (third order), the TAG distribution of an interesterified
mixture of Fa and Fb can be constructed by selecting four
points from the entire range of α. This is possible since F(Fa)
and F(Fb) are constants. 

Similarly, it can be shown that for interesterifications of
more than two RM (nRM), the number of preset in(RM)
[nin(RM)] required for perfect reconstruction is: 

[16]

which is equivalent to the formula indicating the number of
TAG that can be formed based on the number of FA, excluding
isomers (15). 

The coefficients for perfect reconstruction along the entire
range of α can be calculated as follows: 

w(α) = Mx
† x(α) [17]

where Mx is the matrix with the TAG distributions of the pre-
set in(RM) as columns, Mx

† denotes the Moore–Penrose
pseudoinverse of Mx (24), and x(α) denotes the TAG distribu-
tion of the interesterification as a function of α. Figure 3 shows
an example of w(α) for all interesterifications of a mixture con-
taining palm oil (PO) and palm kernel oil (PK). 

Note that for certain x(α) the coefficients in w(α) are nega-
tive. Allowing negative fractions for the preset in(RM) in the
Lagrange framework requires thoughtful setting of the lower
limits. However, lower limits smaller than zero require the en-
forcement of two additional inequality constraints: 

[18]

[19]

where Mx indicates the amount of interesterification present, lβ
denotes a corresponding lower limit, my,j,i denotes the element
in My at row j and column i, and ny denotes the number of ele-†
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ments in ye. Equation 19 ensures that the combined contribu-
tion of the preset in(RM) to ye is positive. For ease of further
derivation, Equation 18 is rewritten into: 

we,i – βli ≥ 0 i ∈ in(RM) [20]

which implies scaling of the lower limits by the amount of in-
teresterification present. 

We propose to adapt the Lagrange framework such that the
weights representing the in(RM) components may become
negative. Furthermore, we propose to extend the framework
with the additional inequality constraints by combining the in-
equality constraints into a matrix: 

[21]

where the first columns correspond to the regular RM and the
last columns to the added preset in(RM). This changes the in-
equality constraint (Eq. 6) into: 

Xwe ≥ 0 [22]

This adapted Lagrange method will be referred to as “L3”
in the succeeding sections, and the pseudocode is listed in Fig-
ure 2. Extension of the EM algorithm with these constraints is
impossible because of the nonnegativity requirement of we. 

Furthermore, an extra step is proposed in the qualitative es-
timation procedure to detect the combination of Fa and Fb in
the interesterification. The εy is calculated for the group of RM
and for every combination of pairs of RM that can be in the in-
teresterification. This implies a brute-force search for the pair
of RM giving the lowest εy, which is selected for further pro-
cessing in the backward elimination procedure. 

A tricky step is converting the estimated in(RM), obtained
after the quantitative estimation, into a single interesterifica-
tion. Using Equation 18, we determine the amount of inter-
esterification present. Uncovering the α is a bit more tedious
and can be achieved by minimizing: 

εx = arg min x(α) − Mxwe
2 [23]

α

where Mx is a matrix with the TAG distributions of the in(RM)
as columns and we is a vector containing the in(RM) fractions.
Using Equations 18 and 23, we convert the in(RM) fractions
into α and β, giving a converted vector denoted we,c. This is
schematically indicated in Figure 4. 

EXPERIMENTS

Both the qualitative and the quantitative methods were tested
on simulated data by the following procedure: 

1. Select a set of RM.
2. Select the analytical techniques.
3. Construct My.
4. Generate a random wr and related wr,c.
5. Calculate yr, and generate yn. 
6. Estimate we based on My and yn and convert it into we,c.
7. Compare we,c with wr,c. [24]
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FIG. 3. A plot of w(α) for the combination of palm oil (PO) and palm
kernel oil (PK). The curves presented indicate the amounts required for
perfect reconstruction, as defined by Equation 17 (see Theoretical Back-
ground section). The curves are based on four equidistantly chosen
in(RM) (see the Detection of interesterifications of unknown mixtures
section) and have been plotted as a function of α.

FIG. 4. Schematic indication of the process of estimating the preset
in(RM) [along with the regular raw materials (RM)] and converting it
into α and β. In the case presented here, three regular fats, i.e., Fa, Fb,
and Fc, are considered and an interesterification (in) of Fa and Fb (not
necessarily the same as the regular RM). The vector is first labeled we
and after conversion we,c (see Theoretical Background section). See Fig-
ure 3 for other abbreviation.

(6)

(20)

(18)

(19)



To compare the real wr,e after conversion with the estimated
we,c we used:

[25]

where εw signifies the distance measure that defines how well
the estimated we,c matches the generated wr,c. Note that if the
qualitative estimation of the combination of RM in the inter-
esterification is incorrect, one compares two β values corre-
sponding to a different RM combination. This was penalized
by inserting a zero in both vectors, indicating that the β values
are compared to zero. 

The simulations were performed with a set of eight RM.
This set consisted of three oils, i.e., bean oil (BO), sunflower
oil (SF), and rapeseed oil (RP); two medium-melting fats
(MMF), i.e., hardened coconut oil (CN31) and PK; and three
high-melting fats (HMF), i.e., PO, palm stearin (dfPOs52mp),
and multifractionated palm stearin (mfPOs). Furthermore, all
interesterifications based on a mixture of an arbitrary HMF and
an arbitrary MMF or oil were considered (thus, there were 15
possible combinations). All wr vectors were qualitatively gen-
erated by randomly selecting one oil/MMF, one HMF, one ran-
dom interesterification, and a second HMF (80% chance) or
oil/MMF (20% chance). Hence, all vectors had four different
RM (counting the interesterification as a single RM). Knowl-
edge about this a priori distribution was explicitly excluded
from the estimates made so as to obtain unbiased estimates. 

The quantitative amounts were generated so as to resemble
realistic mixtures by: 

80% chance 2 of HMF
oil/MMF1: γ1
β: (1-γ1)γ2
α: γ4
HMF1: (1−γ1)(1−γ2)γ3
HMF2: (1−γ1)(1−γ2)(1−γ3)

20% chance 2 of oils/MMF [26]
oil/MMF1: γ1γ3
oil/MMF2: γ1(1−γ3)
β: (1-γ1)γ2
α: γ4
HMF1: (1−γ1)(1−γ2)

γ1,2,3 are random Gaussian distributed variables with mean 0.5
and standard deviation 0.1, and the interesterification variable
γ4 is a random Gaussian distributed variable with mean 0.5 and
standard deviation 0.2. Nonnegativity and summation to 1 were
incorporated by clipping and normalizing the resulting wr. In
the simulations FAME, FAME2-pos, CN, and AgLC, analyti-
cal data were used, taken from an internal database. 

The real mixtures analyzed were made using commercially
available products obtained from Unilever’s factory in Rotter-
dam (The Netherlands). 

All calculations were performed in the MATLAB 7 pro-
gramming environment (25). 

Noise characteristics of the analytical data. It is imperative
to have a correct understanding of the noise present in the ana-
lytical data to develop a suitable method for FBR. Therefore,
we set up an experiment to determine the noise parameters of
the four analytical techniques used throughout this paper
(FAME, FAME2-pos, CN, and AgLC). For each of the four
methods, a reference sample was analyzed over a period of a
year. For the FAME analysis (ISO 5508 and 5509), 24 mea-
surements of reference sample bcr-164 (26) were performed.
Similarly, for the FAME2-pos [IUPAC method 2.210 (27)], 18
measurements of sample in(PO) were taken. For the CN, (ISO
CD 22508) 40 measurements of sample 60PK39/40RP70 were
taken, and for the AgLC (as described in Ref. 28), 26 measure-
ments of sample in(PO) were performed. For each of the meth-
ods, we studied the relation between the means and standard
deviations. The coefficients c1 and c2 in the proposed noise
model (Eq. 10) were fitted by trial and error, matching the re-
gression lines. The resulting means and standard deviations are
shown in Figure 5. The c1 and c2 values determined are listed
in Table 1. 

As can be seen from Figure 5 and Table 1, the FAME,
FAME2-pos, and CN methods had both an additive and a mul-
tiplicative noise component, whereas the AgLC method
showed only an additive term. These noise coefficients were
used in all simulation experiments throughout this paper. 

RESULTS AND DISCUSSION

Qualitative FBR. To test the qualitative estimation procedure,
we generated 2,000 random wr vectors as described, with four
nonzero RM. Figure 6 shows both —εy and —εw as a function of
the number of RM. The plot of the —εy shows a descending line
as expected. The plot of —εw shows a dip at four RM, which is to
be expected because the original generated wr had four nonzero
RM. This clearly shows the advantage that can be gained by
correct qualitative estimation of a mixture. Simultaneous with
the dip in —εw, one can discern a bend in the —εy plot, justifying a
strategy focused on detecting this. 

Both the Niekerk and Vliet methods provide a stopping cri-
terion for the backward elimination procedure. To compare
them and investigate their performance, we generated a set of
1,000 different random wr vectors and, based thereon, 1,000
yn. Using the L1, L2, L3, and EM methods, we performed qual-
itative estimations, and the resulting we were compared quali-
tatively to wr. We varied the Vliet threshold from 0 to 100% in
steps of 1% and the Niekerk threshold from 0 to 0.10 in steps
of 0.001. The number of true positives (TP) as a function of the
thresholds was then derived. A TP is defined as a we for which
the complete set of RM has been correctly identified, including
a correct estimation of the combination of RM in the interester-
ification. 

Figure 7 shows the result of the 1,000 qualitative estima-
tions as a function of the threshold levels. The figure shows a
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relatively flat TP score around the range at which the maximum
was scored. Furthermore, one can see that the EM method
scored fewer TP over the complete range of threshold levels.
Most interesting are the maximal numbers of TP scored, which
are listed in Table 2. This table lists the number of times the
methods selected the correct combination of interesterified RM
and the maximum number of TP scored for either one of the
qualitative strategies. Table 2 shows that the number of times
the correct combination of RM was selected was, at the most,
497 for the L1 method and, at the least, 416 for the EM method.
This is an unexpected result since L3 is, in principle, better
equipped to estimate in(RM), as it allows negative fractions for
them. The explanation lies in the fact that the four in(RM) frac-
tions can move freely through the we(α) space. The L3 method
is the only one that can theoretically find any point on the tra-
jectory, but none of the methods actually restrict the fractions
to a point on the four (scaled) curves (Fig. 3). For the brute
force search with the L3 method, we observed that the differ-
ence between the lowest and the next-lowest εy was smaller
than this difference for the L1 and L2 methods. This was
caused by the flexibility of the L3 method and more often re-
sulted in an overfitting of the data in a noisy situation. 

Overall, the maximum numbers of TP scored for the Niek-
erk and Vliet methods were close. Since the results were not
significantly in favor of either method, we chose to use the
Vliet method in the remainder of the paper. 

When a method scores the same number of TP for different
threshold levels, it can be favorable to choose the lowest
threshold level. This is because a lower threshold level will re-
sult in more cases in which a surplus RM is estimated to be pre-
sent, which might be preferable to a higher chance that RM are
left out erroneously. The choice in this trade-off will depend on
the frequency and cost associated with these two cases of in-
correct qualitative estimation. 

Quantitative FBR. The four methods were compared quantita-
tively in terms of εw as defined by Equation 25. The comparison
is based on 10,000 random wr. Three different simulation regimes
were used: The estimations were made first using 10,000 yn, sec-
ond by independently generating two yn for each wr (thus, 20,000
yn in total) and using the average of the two as input for the esti-
mation, and third by using the previous procedure but with four
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FIG. 5. Scatterplots of the measured (circles and solid lines) and simulated (squares and dashed lines) means and
SD of the FAME (upper left), FAME2-pos (upper right), carbon number (CN) (lower left) and AgLC (lower right). The
measured data were obtained by measuring a single sample several times (over a time period of 1 yr): FAME: 24;
FAME2-pos: 18; CN: 40; and AgLC: 26. Each figure also shows the regression lines corresponding to the data. The
noise parameters determined are listed in Table 1. The simulated data represent the results of 1,000 simulated yn
vectors. 

TABLE 1
List of the Determined Noise Coefficientsa

for All Four Analytical Methods

Method c1 c2

FAME 0.0320 0.0015 
FAME2-pos 0.0250 0.0008 
CN 0.0500 0.0030 
AgLC 0 0.0100 
aThe coefficients refer to Equation 10. CN, carbon number.



independently generated yn. Using the average of multiple inde-
pendently generated yn as an input for the estimation in fact sim-
ulated a noise reduction. 

Table 3 shows the best methods in terms of εy and εw,c based
on these 10,000 yn. One can see that the L3 method was by far
superior in terms of εy, scoring best in 9,137, 9,382, and 9,535
cases out of the total 10,000 for each of the three different sim-
ulation regimes. The method L3 did not perform best for all
cases because the qualitative estimations of the four methods
can result in different sets of RM. Table 3 also shows the num-
ber of TP each method scored for the 10,000 estimations. In
addition, it presents a histogram of the TP in terms of the max-
imum absolute error compared with wr. 

Table 3 shows that the biggest qualitative error is introduced
by selecting the wrong combination of RM in the interesterifi-
cation. Investigation of the incorrect estimates revealed that the
most common error made was the swapping of BO and SF. Es-
pecially at low values for β and 1 − α (the level of oil present
was equal to the product of those two), this occurred frequently.
The next main cause of error was the selection of five RM (the
correct set of four plus an additional one). 

Table 3 shows that under the noise parameters determined,
the L3 method outperformed the others based on εw. Using a
single yn, the L3 method found a qualitatively correct solution
with a maximum absolute error of <0.01 in 19.0% of the TP
cases, which was slightly better than L1 (16.8%) and L2
(18.2%). The EM method, on the other hand, scored consider-
ably worse: In only 9.9% of the cases was the error this small. 

The performance increased significantly for all methods
when the average of two or four yn was used. The performance
increase was strongest for the L3 method. Therefore, we pro-
pose that the L3 method be used for FBR. 

Based on the simulated results, we propose a three-step ap-
proach as the current best strategy: Step 1: Determine the pair
of RM in the interesterification by a brute-force search. Step 2:
Apply backward elimination with the Vliet threshold at 27%.
Step 3: Perform a quantitative estimation with L3, preferably
using an average of multiple replicated measurements. 

Real data. The four methods were compared based on their
ability to correctly identify three mixtures. These mixtures
were prepared, and FAME, FAME2-pos, CN, and AgLC analy-
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FIG. 6. Plot showing —εw (solid line)as wellas —εy (dashed line) as a function of
the number of RM. The plot was obtained by applying the backward elimi-
nation procedure for 2,000 random wr with four RM. The backward elimi-
nation was started with nine RM down to one for L3. For abbreviation see
Figure 2.

FIG. 7. Plot of the number of true positive (TP) elements (i.e., the num-
ber of times the qualitative estimation resulted in the correct set of RM)
as a function of the Niekerk threshold (lower figure) as well as the Vliet
threshold (upper figure). The Vliet threshold ranged from a 0% increase
up to a 100% increase in mean squared error. The Niekerk method had
a threshold range from 0 up to 0.10. The results were obtained by simu-
lating the qualitative estimation for 1,000 random wr.

TABLE 2
Table Listing the Maxima Found in Figure 7a

Method nin nTP,V V nTP,N Niekerk

L1 647 494 28% 497 0.058 
L2 653 489 30% 492 0.058 
L3 625 476 27% 474 0.061 
EM 575 420 25% 416 0.061 
aColumn nin indicates the number of times a method found the correct combination of raw materials
(RM) in the interesterification (in) based on the qualitative estimation of 1,000 random wr . Column
nTP,V indicates the actual number of true positives (TP) scored using the Vliet procedure and V the
threshold value at which this occurred. For the Niekerk strategy, nTP,N and N list the same. The num-
bers correspond to Figure 7.



ses were performed. The RM themselves were not analyzed.
Therefore, the yn of the RM in My were not exactly the same.
This provided a test bench with analytical noise as well as nat-
ural variance noise. 

A larger set of RM was used consisting of three oils, i.e.,
BO, SF, and RP; four MMF, i.e., coconut oil (CN), CN31, PK,
and hardened palm kernel oil (PK39); and five HMF, i.e., PO,
dfPOs52mp, hardened palm oil (PO58), mfPOs, and hardened
rapeseed oil (RP68). Furthermore, all interesterifications based
on a mixture of an arbitrary HMF, FHMF, and an arbitrary

MMF, FMMF, were considered (thus, 20 possible combina-
tions). Table 4 lists the results, including εy and εw. 

The estimates of Mix 1 were very good: All four methods
yielded a qualitatively correct estimate. The differences be-
tween the methods were only marginal, slightly favoring the
L3 method, as this scored the lowest εy and εw. 

The four estimates of Mix 2 all yielded a correct qualitative es-
timation. All four estimates were quite close to the composition of
the original mixture. However, L1 slightly outperformed the oth-
ers as it was slightly closer in terms of α and had the lowest εw. 

FAT BLEND RECOGNITION 715

JAOCS, Vol. 82, no. 10 (2005)

TABLE 3
Table Presenting the Quantitative Performance of the Four Methodsa

εy εw,c nin nTP <.01 <.02 <.05 <.10 <.20 <1.00

One yn
L1 76 2,490 7,977 6,595 0.1820 0.4851 0.8688 0.9854 1.0000 1.0000
L2 713 1,760 7,987 6,484 0.1675 0.4661 0.8590 0.9861 1.0000 1.0000
L3 9,137 3,371 7,698 6,217 0.1900 0.5018 0.8753 0.9883 1.0000 1.0000
EM 74 2,379 7,496 6,010 0.0993 0.3035 0.6865 0.8739 0.9815 1.0000
Total 10,000 10,000

Two yn
L1 43 2,647 8,673 7,735 0.2794 0.6081 0.9325 0.9961 1.0000 1.0000
L2 546 1,726 8,681 7,647 0.2555 0.5868 0.9266 0.9970 1.0000 1.0000
L3 9,382 3,795 8,486 7,303 0.2975 0.6289 0.9366 0.9978 1.0000 1.0000
EM 29 1,832 8,069 6,933 0.1255 0.3433 0.6997 0.8696 0.9864 1.0000
Total 10,000 10,000

Four yn
L1 40 2,879 9,157 8,502 0.3907 0.7098 0.9672 0.9994 1.0000 1.0000
L2 412 1,615 9,161 8,396 0.3486 0.6837 0.9664 0.9996 1.0000 1.0000
L3 9,535 4,313 9,079 8,100 0.4452 0.7553 0.9762 0.9998 1.0000 1.0000
EM 13 1,193 8,371 7,346 0.1465 0.3625 0.7062 0.8618 0.9912 1.0000
Total 10,000 10,000

aThe results are listed using one, two, and four yn. For each method, the number of times it provided the best εy and εw,c is
listed, along with the number of correct interesterification selections (nin) and the number of TP (nTP). For the TP estimates,
a tabulated histogram is presented of the maximum absolute error compared with the real composition (wr,c). Results were
obtained by 10,000 simulated estimations using the noise model derived and the qualitative estimation parameters as de-
rived in the Qualitative FBR section.

TABLE 4
The Mixtures Prepared and Their Estimated Composition Obtained by Each of the Four Methodsa

Mix 1 30RP/70in(60PO/40PK) εy (10−3) εw

L1 26.18SF/73.82in(63PO/37PK) 0.1229 0.0007 
L2 26.40SF/73.60in(64PO/36PK) 0.1225 0.0012 
L3 26.43SF/73.57in(63PO/37PK) 0.1223 0.0007 
EM 26.27SF/73.73in(64PO/36PK) 0.1288 0.0027 

Mix 2 50RP/30SF/15in(40PO58/60PK39)/5PO εy (10−4) εw

L1 43.59RP/34.14SF/7.38PO/14.89in(45PO58/55PK39) 0.4824 0.0008 
L2 44.26RP/34.45SF/6.74PO/14.55in(50PO58/50PK39) 0.4535 0.0019 
L3 44.26RP/34.45SF/6.74PO/14.55in(50PO58/50PK39) 0.4535 0.0019 
EM 44.22RP/36.16SF/3.89PO/15.72in(54PO58/46PK39) 0.6453 0.0034 

Mix 3 60SF/30in(65dfPOs52mp/35PK39)/10PK εy (10−3) εw

L1 44.18SF/16.02RP/39.81in(54dfPOs52mp/46PK) 0.6039 0.0165 
L2 44.83SF/15.61RP/4.02dfPOs52mp/35.54in(45dfPOs52mp/55PK) 0.5499 0.0205 
L3 44.98SF/14.92RP/4.36PK/2.39PO/33.36in(57dfPOs52mp/43PK) 0.5210 0.0128 
EM 48.56SF/11.72RP/39.72in(55dfPOs52mp/45PK) 0.8384 0.0150 

aThe last columns indicate εy and εw. RP, rapeseed oil; in, interesterification; PO, palm oil; PK, palm kernel oil; SF, sun-
flower oil; PO58, hardened palm oil; PK39, hardened palm kernel oil; dfPOs52mp, palm stearin. 



The qualitative results for Mix 3 were worse than for the
other two mixtures. Once again, RP was estimated to be pre-
sent and less SF; combined, they represented the total amount
of SF originally present. All four methods estimated the wrong
combination of RM in the interesterification: They estimated
PK instead of PK39. The L3 method was the only one that in-
dicated the presence of some PK, and incorrectly a small
amount of PO as well. The L2 method also found a small
amount of dfPOs52mp instead of the PK. Furthermore, the L3
method provided the best estimate for α and scored the lowest
εw. Therefore, we feel that this is the preferred method. 
The results obtained by estimating these mixtures were very
promising. More research is needed to draw conclusions on the
performance of the four methods in general. It should be noted
that these real-life examples suffered from the presence of nat-
ural variance: The profiles used in My were not from the same
batch as those from which the mixtures were prepared. Further-
more, mixtures containing less than four RM were prepared so
as to offer insight into the worst-case performance. 
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